Concrete Mathematics

Homework Set 3
October 4, 2005
http://staffweb.ncnu.edu.tw/shieng
Due date: Oct. 11
Problem 1 Write out the following sums in full and explain why they are different.

$$
\sum_{0 \leq k \leq 5}(2 k+1), \sum_{0 \leq k^{2} \leq 5}\left(2 k^{2}+1\right)
$$

Problem 2 Let $H_{n}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}$, the nth harmonic number. What is H_{0} ? And what is the closed form of $\sum_{0 \leq k \leq n} H_{k}$?

Problem 3 Evaluate $\sum_{0 \leq k<n} k \cdot 2^{k}$ in closed form.
Problem 4 What is $\sum_{k=m}^{n}\left(a_{k}-a_{k-1}\right)$? Can you prove your result by manipulating the \sum-notations and without using any "..."?

Problem 5 Consider the following derivation

$$
\left(\sum_{k=1}^{n} a_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}}\right)=\sum_{1 \leq k \leq n} \sum_{1 \leq k \leq n} \frac{a_{k}}{a_{k}}=\sum_{1 \leq k \leq n} \sum_{1 \leq k \leq n} 1=\sum_{k=1}^{n} n=n^{2}
$$

What's wrong with it?
Problem 6 Prove the identity

$$
\left(\sum_{k=1}^{n} a_{k} x_{k}\right)\left(\sum_{k=1}^{n} b_{k} y_{k}\right)=\left(\sum_{k=1}^{n} a_{k} y_{k}\right)\left(\sum_{k=1}^{n} b_{k} x_{k}\right)+\sum_{1 \leq j<k \leq n}\left(a_{j} b_{k}-a_{k} b_{j}\right)\left(x_{j} y_{k}-x_{k} y_{j}\right)
$$

Also show that the famous Cauchy-Schwatz inequality

$$
\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right) \geq\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2}
$$

is a consequence of it.

