Concrete Mathematics Homework Set 3 October 4, 2005 http://staffweb.ncnu.edu.tw/shieng

Due date: Oct. 11

Problem 1 Write out the following sums in full and explain why they are different.

$$\sum_{0 \le k \le 5} (2k+1), \ \sum_{0 \le k^2 \le 5} (2k^2+1).$$

Problem 2 Let $H_n = \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$, the *n*th harmonic number. What is H_0 ? And what is the closed form of $\sum_{0 \le k \le n} H_k$?

Problem 3 Evaluate $\sum_{0 \le k < n} k \cdot 2^k$ in closed form.

Problem 4 What is $\sum_{k=m}^{n} (a_k - a_{k-1})$? Can you prove your result by manipulating the \sum -notations and without using any "…"?

Problem 5 Consider the following derivation

$$\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} \frac{1}{a_k}\right) = \sum_{1 \le k \le n} \sum_{1 \le k \le n} \frac{a_k}{a_k} = \sum_{1 \le k \le n} \sum_{1 \le k \le n} 1 = \sum_{k=1}^{n} n = n^2.$$

What's wrong with it?

Problem 6 Prove the identity

$$\left(\sum_{k=1}^{n} a_k x_k\right) \left(\sum_{k=1}^{n} b_k y_k\right) = \left(\sum_{k=1}^{n} a_k y_k\right) \left(\sum_{k=1}^{n} b_k x_k\right) + \sum_{1 \le j < k \le n} (a_j b_k - a_k b_j) (x_j y_k - x_k y_j).$$

Also show that the famous *Cauchy-Schwatz* inequality

$$\left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right) \ge \left(\sum_{k=1}^{n} a_k b_k\right)^2$$

is a consequence of it.