Theory of Computation Chapter 8

Guan-Shieng Huang

Apr. 28, 2003

Reduction

To reduce Problem A to Problem B, we mean if B is solved, then A is solved.
x : an instance of Problem A
\mathcal{R} : transformation from A to B
$\mathcal{R}(x)$: an instance of B
We require $\mathcal{R}(x) \in B$ iff $x \in A$.
Hence B is solved implies that A is solved.
Or, B is at least as hard as A.

For computational problems, we say language L_{1} is reducible to L_{2} if there is a log-space reduction \mathcal{R} such that

$$
x \in L_{1} \text { if and only if } \mathcal{R}(x) \in L_{2}
$$

for any string x as the input of decision problem for L_{1}.

Propositional 8.1

If \mathcal{R} is a \log-space reduction, then \mathcal{R} is a polynomial-time reduction.

1. There are at most $O\left(n c^{k \lg n}\right)$ possible configurations where c and k are constants..
2. If a computation for a Turing machine is terminated, each configuration can appear at most once.
3. Hence, \mathcal{R} uses at most polynomial steps.

Reducing Hamilton Path (HP) to SAT

(Example 8.1)

HP: Given a graph, whether there is a path that visits each node exactly once.
G has an HP iff $\mathcal{R}(G)$ is satisfiable.
$x_{i, j}$: node j is the i th node in the HP.

$$
\mathcal{R}(G)= \begin{cases}\left(x_{1, j} \vee x_{2, j} \vee \cdots \vee x_{n, j}\right) & \text { for } 1 \leq j \leq n \\ \left(\neg x_{i, j} \vee \neg x_{k, j}\right) & \text { for } 1 \leq i, j \neq k \leq n \\ \left(x_{i, 1} \vee x_{i, 2} \vee \cdots \vee x_{i, n}\right) & \text { for } 1 \leq i \leq n \\ \left(\neg x_{k, i} \vee \neg x_{k+1, j}\right) & \text { for each pair }(i, j) \text { not in } G\end{cases}
$$

Reducing Reachability To SAT

(Example 8.2)

Given a graph G labeled from 1 to n, is there a path from node 1 to node n in G ?
$g_{i, j, k}$: there is a path from node i to node j and this path passes through nodes with indices at most k.
$\mathcal{R}(G)=\left\{\begin{array}{l}g_{i, j, k} \Leftrightarrow\left(g_{i, k, k-1} \wedge g_{k, j, k-1}\right) \vee g_{i, j, k-1}, \text { for } 1 \leq i, j, k \leq n \\ g_{i, j, 0}, \text { if }(i, j) \text { is an edge in } G .\end{array}\right.$
Then node 1 can reach node n in G if and only if $\mathcal{R}(G)$ is satisfiable.

Reducing Circuit SAT to SAT

(Example 8.3)

(x) $\Longrightarrow \neg g \vee x, g \vee \neg x(g \Leftrightarrow x)$
$\bigcirc \Longrightarrow \neg g \vee \neg h, g \vee h(g \Leftrightarrow \neg h)$

ソ $\Longrightarrow \neg h \vee g, \neg h^{\prime} \vee g, h \vee h^{\prime} \vee \neg g\left(g \Leftrightarrow h \vee h^{\prime}\right)$

Figure 4-2. Two circuits.

Reducing Circuit Value to Circuit SAT

Reduction by generalization.

Proposition 8.2

If \mathcal{R} is a reduction from L_{1} to L_{2} and \mathcal{R}^{\prime} is a reduction from L_{2} to L_{3}, then there is a reduction from L_{1} to L_{3}.

Given any x (either $x \notin L_{1}$ or $x \in L_{1}$), we have

$$
x \in L_{1} \text { iff } \mathcal{R}(x) \in L_{2} \text { iff } \mathcal{R}^{\prime}(\mathcal{R}(x)) \in L_{3} .
$$

Thus, we have a reduction s.t. $x \in L_{1}$ iff $\mathcal{R}^{\prime}(\mathcal{R}(x)) \in L_{3}$.

However, we cannot implement the composition $\mathcal{R}^{\prime} \circ \mathcal{R}$ as

1. Compute $\mathcal{R}(x)$;
2. Compute $\mathcal{R}^{\prime}(\mathcal{R}(x))$.

This is because we may need polynomial spaces in order to store $\mathcal{R}(x)$ in Step 1 .

Complete Problems

(Definition 8.2)

\mathcal{C} : complexity class
L : a language in C
We say L is \mathcal{C}-complete if any language $L^{\prime} \in \mathcal{C}$ can be reduced to L.

Examples:
NP-complete, P-complete, PSPACE-complete, NL-complete

Definition A class \mathcal{C}^{\prime} is closed under reductions if whenever L is reducible to L^{\prime} and $L^{\prime} \in \mathcal{C}^{\prime}$, then also $L \in \mathcal{C}^{\prime}$.

Remark

1. A complete problem is the least likely among all problems in \mathcal{C} to belong in a weaker class $\mathcal{C}^{\prime} \subseteq \mathcal{C}$.
2. If it does, then the whole class \mathcal{C} coincides with the weaker class \mathcal{C}^{\prime}, as long as \mathcal{C}^{\prime} is closed under reduction.

Proposition 8.3

P, NP, coNP, L, NL, PSPACE, and EXP are all closed under log-space reductions.

Remark:
If an NP-complete problem is in P , then $\mathrm{P}=\mathrm{NP}$.

Proposition 8.4

If two classes \mathcal{C} and \mathcal{C}^{\prime} are both closed under reductions, and there is a language L which is complete for both \mathcal{C} and \mathcal{C}^{\prime}, then $\mathcal{C}=\mathcal{C}^{\prime}$.

Observe that $\mathcal{C} \subseteq \mathcal{C}^{\prime}$ and $\mathcal{C}^{\prime} \subseteq \mathcal{C}$, and thus $\mathcal{C}=\mathcal{C}^{\prime}$.

Cook's Theorem (Theorem 8.2) SAT is NP-complete.

Table Method

\triangleright	0_{s}	1	1	0	\sqcup	
\triangleright	\triangleright	$1_{q_{0}}$	1	0	\sqcup	
\triangleright	\triangleright	1	$1_{q_{0}}$	0	\sqcup	
\triangleright	\triangleright	1	1	$0_{q_{0}}$	\sqcup	
\triangleright	\triangleright	1	1	0	$\sqcup_{q_{0}}$	\sqcup
\triangleright	\triangleright	1	1	$0_{q_{0}^{\prime}}$	\sqcup	
\triangleright	\triangleright	1	1_{q}	\sqcup		
\triangleright	\triangleright	1_{q}	1	\sqcup		
\triangleright	\triangleright_{q}	1	1	\sqcup		
\triangleright	\triangleright	1_{s}	1	\sqcup		
\triangleright	\triangleright	\triangleright	$1_{q_{1}}$	\sqcup		
\triangleright	\triangleright	\triangleright	1	$\sqcup q_{1}$	\sqcup	
\triangleright	\triangleright	\triangleright	$1_{q_{1}^{\prime}}$	\sqcup		
\triangleright	\triangleright	\triangleright_{q}	\sqcup			
\triangleright	\triangleright	\triangleright	\sqcup_{s}	\sqcup		
\triangleright	\triangleright	\triangleright	$"$ yes"	\sqcup		

Figure 8.3. Computation table.

Theorem 8.1

Circuit Value is P-complete. $p(|x|) \times p(|x|)$ size computation table where p is the time bound for the algorithm.

(a)

(b)

(c)

Corollary: Monotone Circuit Value is P-complete.

Cook's Theorem

SAT is NP-complete.
To standardize the behavior of non-determinism:

Figure 8-5. Reducing the degree of nondeterminism.

Figure 8-6. The construction for Cook's theorem.

