Theory of Computation Chapter 2

Guan-Shieng Huang
shieng@ncnu.edu.tw

Dept. of CSIE, NCNU

Turing Machines

Definition of TMs

A Turing Machine is a quadruple $M=(K, \Sigma, \delta, s)$, where

1. K is a finite set of states; (line numbers)
2. Σ is a finite set of symbols including \sqcup and \triangleright; (alphabet)
3. $\delta: K \times \Sigma \rightarrow(K \cup\{$ h,"yes","no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$, a transition function; (instructions)
4. $s \in K$, the initial state. (starting point)

- h: halt, "yes":accept, "no": reject (terminate the execution)
\rightarrow : move right, \leftarrow : move left, - : stay (move the head)
- \sqcup : blank, \triangleright : the boundary symbol
- $\delta(q, \sigma)=(p, \rho, D)$

While reading σ at line q, go to line p and write out ρ on the tape. Move the head according to the direction of D.

- $\delta(q, \triangleright)=(p, \rho, \rightarrow)$, to avoid crash.

Example 2.1

Figure 2.1. Turing machine and computation.

Remark

x : input of M

$$
M(x)=\left\{\begin{array}{l}
\text { "yes" } \\
\text { "no" } \\
y \text { if } M \text { entered } h \\
\nearrow \text { if } M \text { never terminates }
\end{array}\right.
$$

Example 2.2

$(n)_{2} \quad \rightarrow \quad(n+1)_{2}$ if no overflow happens.

$p \in K$,	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s,	0	$(s, 0, \rightarrow)$
s,	1	$(s, 1, \rightarrow)$
s,	\sqcup	(q, \sqcup, \leftarrow)
s,	\triangleright	$(s, \triangleright, \rightarrow)$
q,	0	$(h, 1,-)$
q,	1	$(q, 0, \leftarrow)$
q,	\triangleright	$(h, \triangleright, \rightarrow)$

Figure 2.2. Turing machine for binary successor.

Example 2.3 - Palindrome

$p \in K$,	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s	0	$\left(q_{0}, \triangleright, \rightarrow\right)$
s	1	$\left(q_{1}, \triangleright, \rightarrow\right)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	\sqcup	$($ "yes", ப,-)
q_{0}	0	$\left(q_{0}, 0, \rightarrow\right)$
q_{0}	1	$\left(q_{0}, 1, \rightarrow\right)$
q_{0}	\sqcup	$\left(q_{0}^{\prime}, \sqcup, \leftarrow\right)$
q_{1}	0	$\left(q_{1}, 0, \rightarrow\right)$
q_{1}	1	$\left(q_{1}, 1, \rightarrow\right)$
q_{1}	\sqcup	$\left(q_{1}^{\prime}, \sqcup, \leftarrow\right)$

$p \in K$,	$\sigma \in \Sigma$	$\delta(p, \sigma)$
q_{0}^{\prime}	0	(q, \sqcup, \leftarrow)
q_{0}^{\prime}	1	$($ "no", $1,-)$
q_{0}^{\prime}	\triangleright	$($ "yes",,$\rightarrow)$
q_{1}^{\prime}	0	$($ "no" $, 1,-)$
q_{1}^{\prime}	1	(q, \sqcup, \leftarrow)
q_{1}^{\prime}	\triangleright	$($ "yes", $\downarrow \rightarrow)$
q	0	$(q, 0, \leftarrow)$
q	1	$(q, 1, \leftarrow)$
q	\triangleright	$(s, \triangleright, \rightarrow)$

Figure 2.3. Turing machine for palindromes.

Turing Machines as Algorithms

- $L \subseteq(\Sigma-\{\sqcup, \triangleright\})^{*}$, a language
- A TM M decides L if for all string x,

$$
\left\{\begin{array}{l}
x \in L \Rightarrow M(x)=\text { "yes" } \\
x \notin L \Rightarrow M(x)=\text { "no". }
\end{array}\right.
$$

- A TM M accepts L if for all string x,

$$
\left\{\begin{array}{l}
x \in L \Rightarrow M(x)=\text { "yes" } \\
x \notin L \Rightarrow M(x)=\nearrow .
\end{array}\right.
$$

- If L is decided by some TM, we say L is recursive.
- If L is accepted by some TM, we say L is recursively enumerable.

Propositional 2.1

If L is recursive, then it is recursively enumerable.

Representation of mathematical objects:

1. graphs, sets, numbers, ...
2. All acceptable encodings are polynomially related.
(a) binary, ternary
(b) adjacency matrix, adjacency list

However, unary representation of numbers is an exception.

k-string Turing Machines

A k-string Turing machine is a quadruple (K, Σ, δ, s) where

1. K, Σ, s are exactly as in ordinary Turing machines;
2. $\delta: K \times \Sigma^{k} \rightarrow(K \cup\{\mathrm{~h}$,"yes","no" $\}) \times(\Sigma \times\{\leftarrow, \rightarrow,-\})^{k}$;
3. $s \in K$, the initial state.

An Example

$p \in K$,	$\sigma_{1} \in \Sigma$	$\sigma_{2} \in \Sigma$	$\delta\left(p, \sigma_{1}, \sigma_{2}\right)$
s,	0	\sqcup	$(s, 0, \rightarrow, 0, \rightarrow)$
s,	1	\sqcup	$(s, 1, \rightarrow, 1, \rightarrow)$
s,	\triangleright	\triangleright	$(s, \triangleright, \rightarrow, \triangleright, \rightarrow)$
s,	\sqcup	\sqcup	$(q, \sqcup, \leftarrow, \sqcup,-)$
q,	0	\sqcup	$(q, 0, \leftarrow, \sqcup,-)$
q,	1	\sqcup	$(q, 1, \leftarrow, \sqcup,-)$
q,	\triangleright	\sqcup	$(p, \triangleright, \rightarrow, \sqcup, \leftarrow)$
p,	0	0	$(p, 0, \rightarrow, \sqcup, \leftarrow)$
p,	1	1	$(p, 1, \rightarrow, \sqcup, \leftarrow)$
p,	0	1	$($ "no", $,--, 1,-)$
p,	1	0	("no",1,-,0,-)
p,	\sqcup	\triangleright	("yes", ப, -,,$\rightarrow)$

Figure 2.5. 2-string Turing machine for palindromes.

1. If for a k-string Turing machine M and input x we have

$$
(s, \triangleright, x, \triangleright, \epsilon, \ldots, \triangleright, \epsilon) \xrightarrow{M^{t}}\left(H, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)
$$

for some $H \in\{$ h,"yes","no"\}, then the time required by M on input x is t.
2. If for any input string x of length $|x|, M$ terminates on input x within time $f(|x|)$, we say $f(n)$ is a time bound for M.
$\operatorname{TIME}(f(n))$: the set of all languages that can be decided by TMs in time $f(n)$.

Theorem 2.1
Given any k-string TM M operating within time $f(n)$, we can construct a TM M^{\prime} operating within time $O\left(f(n)^{2}\right)$ and such that, for any input $x, M(x)=M^{\prime}(x)$.
(by simulation)

Linear Speedup

Theorem 2.2
Let $L \in \operatorname{TIME}(f(n))$. Then, for any $\epsilon>0$, $L \in \operatorname{TIME}\left(f^{\prime}(n)\right)$, where $f^{\prime}(n)=\epsilon \cdot f(n)+n+2$.

Defi nition

$$
\mathcal{P}=\bigcup_{k \geq 1} \operatorname{TIME}\left(n^{k}\right) .
$$

Space Bounds

A k-string TM with input and output is an ordinary k-string TM s.t.

1. the fi rst tape is read-only; (Input cannot be modifi ed.)
2. the last tape is write-only.
(Output cannot be wound back.)

Proposition

For any k-string TM M operating with time bound $f(n)$ there is a $(k+2)$-string TM M^{\prime} with input and output, which operates within time bound $O(f(n))$.

Space Bound for TM

Suppose that, for a k-string TM M and input x,

$$
(s, \triangleright, x, \ldots, \triangleright, \epsilon) \xrightarrow{M^{*}}\left(H, w_{1}, u_{1}, \ldots, w_{k}, u_{k}\right)
$$

where $H \in\{\mathrm{~h}$, "yes","no" $\}$ is a halting state.

1. The space required by M on input x is $\sum_{i=1}^{k}\left|w_{i} u_{i}\right|$.
2. If M is a machine with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1}\left|w_{i} u_{i}\right|$.
3. We say that Turing machine M operates within space bound $f(n)$ if, for any input x, M requires space at most $f(|x|)$.
4. A language L is in the space complexity class $\operatorname{SPACE}(f(n))$ if there is a TM with I/O that decides L and operates within space bound $f(n)$.
5. Defi ne $\mathcal{L}=\operatorname{SPACE}(\lg (n))$.

Theorem 2.3

Let L be a language in $\operatorname{SPACE}(f(n))$. Then, for any
$\epsilon>0, L \in \operatorname{SPACE}(2+\epsilon \cdot f(n))$.

Random Access Machines

Input: $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$
Output: r_{0}
Memory: $r_{0}, r_{1}, r_{2}, \ldots$
k : program counter
Three address modes:

1. j : direct;
2. $\uparrow j$: indirect;
3. $=j$: immediate.

Instruction	Operand	Semantics
READ	j	$r_{0}:=i_{j}$
READ	$\uparrow j$	$r_{0}:=i_{r_{j}}$
STORE	j	$r_{j}:=r_{0}$
STORE	$\uparrow j$	$r_{r_{j}}:=r_{0}$
LOAD	x	$r_{0}:=x$
ADD	x	$r_{0}:=r_{0}+x$
SUB	x	$r_{0}:=r_{0}-x$
HALF		$r_{0}:=\left\lfloor\frac{r_{0}}{2}\right\rfloor$
JUMP	j	$\kappa:=j$
JPOS	j	if $r_{0}>0$ then $\kappa:=j$
JZERO	j	if $r_{0}=0$ then $\kappa:=j$
JNEG	j	if $r_{0}<0$ then $\kappa:=j$
HALT		$\kappa:=0$

Theorem 2.5

If a RAM program Π computes a function ϕ in time $f(n)$, then there is a 7 -string TM which computes ϕ in time $O\left(f(n)^{3}\right)$.
(by simulation)

Nondeterministic Machines

A nondeterministic TM is a quadruple $N=(K, \Sigma, \Delta, s)$, where

1. K, Σ, s are as in ordinary TM;
2. $\Delta \subseteq(K \times \Sigma) \times[(K \cup\{$ h,"yes","no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}]$.

Figure 2-9. Nondeterministic computation.

1. N decides a language L if for any $x \in \Sigma^{*}$,
$x \in L$ if and only if $(s, \triangleright, x) \xrightarrow{N^{*}}$ ("yes", w, u) for some strings w and u.
2. An input is accepted if there is some sequence of nondeterministic choice that results in "yes".

N decides L in time $f(n)$ if

1. N decides L;
2. for any $x \in \Sigma^{*}$, if $(s, \triangleright, x) \xrightarrow{N^{k}}$ ("yes", $\left.w, u\right)$, then $k \leq f(|x|)$.

Let $\operatorname{NTIME}(f(n))$ be the set of languages decided by NTMs within time f.

Let $\mathcal{N P}=\bigcup_{k \geq 1} \operatorname{NTIME}\left(n^{k}\right)$.
We have

$$
\mathcal{P} \subseteq \mathcal{N P} .
$$

Example 2.9

$T S P(D) \in \mathcal{N P}$

1. Write out arbitrary permutation of $1, \ldots, n$.
2. Check whether the tour indicated by this permutation is less than the distance bound.

Theorem 2.6

Suppose that language L is decided by a NTM N in time $f(n)$. Then it is decided by a 3 -string DTM M in time $O\left(c^{f(n)}\right)$, where $c>1$ is some constant depending on N.
$\left(\operatorname{NTIME}(f(n)) \subseteq \bigcup_{c \geq 1} \operatorname{NTIME}\left(c^{f(n)}\right)\right.$.)

Example 2.10

- Reachability $\in \operatorname{NSPACE}(\lg n)$ (This is easy.)
- Reachability $\in \operatorname{SPACE}\left((\lg n)^{2}\right)$ (In Chapter 7.)

Why employ nondeterminism?

Exercises

2.8.1, 2.8.4, 2.8.6, 2.8.7, 2.8.8, 2.8.9, 2.8.10, 2.8.11

