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Turing Machines
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Definition of TMs

A Turing Machine is a quadruple M = (K, Σ, δ, s),
where

1. K is a finite set of states; (line numbers)

2. Σ is a finite set of symbols including t and .; (alphabet)

3. δ : K × Σ→ (K ∪ {h,“yes”,“no”})× Σ× {←,→,−}, a
transition function; (instructions)

4. s ∈ K, the initial state. (starting point)
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• h: halt, “yes”:accept, “no”: reject
(terminate the execution)

• →: move right,←: move left, −: stay
(move the head)

• t: blank, .: the boundary symbol
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• δ(q, σ) = (p, ρ,D)
While reading σ at line q, go to line p and
write out ρ on the tape. Move the head
according to the direction of D.

• δ(q, .) = (p, ρ,→), to avoid crash.
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Example 2.1
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Remark

x: input of M

M(x) =



















“yes”
“no”
y if M entered h

↗ if M never terminates
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Example 2.2

(n)2 → (n + 1)2 if no overflow happens.
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Example 2.3 — Palindrome
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Turing Machines as Algorithms

• L ⊆ (Σ− {t, .})∗, a language
• A TM M decides L if for all string x,

{

x ∈ L⇒M(x) = “yes”
x 6∈ L⇒M(x) = “no”.

• A TM M accepts L if for all string x,
{

x ∈ L⇒M(x) = “yes”
x 6∈ L⇒M(x) =↗ .
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• If L is decided by some TM, we say L is
recursive.

• If L is accepted by some TM, we say L is
recursively enumerable.
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Propositional 2.1

If L is recursive, then it is recursively enumerable.
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Representation of mathematical objects:

1. graphs, sets, numbers, ...

2. All acceptable encodings are polynomially
related.

(a) binary, ternary
(b) adjacency matrix, adjacency list

However, unary representation of numbers is an

exception.
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k-string Turing Machines

A k-string Turing machine is a quadruple
(K, Σ, δ, s) where

1. K,Σ, s are exactly as in ordinary Turing machines;

2. δ : K × Σk → (K ∪ {h,“yes”,“no”})× (Σ× {←,→,−})k;

3. s ∈ K, the initial state.
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An Example
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1. If for a k-string Turing machine M and input x
we have
(s, ., x, ., ε, . . . , ., ε)

M t

−→ (H,w1, u1, . . . , wk, uk)

for some H ∈ {h,“yes”,“no”}, then the time
required by M on input x is t.

2. If for any input string x of length |x|, M

terminates on input x within time f(|x|), we
say f(n) is a time bound for M .
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TIME(f(n)): the set of all languages that can be
decided by TMs in time f(n).

Theorem 2.1
Given any k-string TM M operating within
time f(n), we can construct a TM M ′

operating within time O(f(n)2) and such that,
for any input x, M(x) = M ′(x).
(by simulation)
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Linear Speedup

Theorem 2.2
Let L ∈ TIME(f(n)). Then, for any ε > 0,
L ∈ TIME(f ′(n)), where f ′(n) = ε · f(n) + n + 2.

Definition
P =

⋃

k≥1 TIME(nk).
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Space Bounds

A k-string TM with input and output is an ordinary
k-string TM s.t.

1. the first tape is read-only;
(Input cannot be modified.)

2. the last tape is write-only.
(Output cannot be wound back.)
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Proposition

For any k-string TM M operating with time bound

f(n) there is a (k + 2)-string TM M’ with input

and output, which operates within time bound

O(f(n)).

Theory of ComputationChapter 2 – p.20/36



Space Bound for TM

Suppose that, for a k-string TM M and input x,

(s, ., x, . . . , ., ε)
M∗

−→ (H,w1, u1, . . . , wk, uk)

where H ∈ {h,“yes”,“no”} is a halting state.

1. The space required by M on input x is
∑

k

i=1
|wiui|.

2. If M is a machine with input and output, then the space
required by M on input x is

∑

k−1

i=2
|wiui|.
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1. We say that Turing machine M operates
within space bound f(n) if, for any input x, M
requires space at most f(|x|).

2. A language L is in the space complexity class
SPACE(f(n)) if there is a TM with I/O that
decides L and operates within space bound
f(n).

3. Define L = SPACE(lg(n)).
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Theorem 2.3

Let L be a language in SPACE(f(n)). Then, for any

ε > 0, L ∈ SPACE(2 + ε · f(n)).

Theory of ComputationChapter 2 – p.23/36



Random Access Machines

Input: (i1, i2, . . . , in)
Output: r0

Memory: r0, r1, r2, . . .
k: program counter
Three address modes:

1. j: direct;

2. ↑ j: indirect;

3. = j: immediate.
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Theorem 2.5

If a RAM program Π computes a function φ in
time f(n), then there is a 7-string TM which
computes φ in time O(f(n)3).

(by simulation)
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Nondeterministic Machines

A nondeterministic TM is a quadruple N = (K,Σ,∆, s),
where

1. K,Σ, s are as in ordinary TM;

2. ∆ ⊆ (K ×Σ)× [(K ∪ {h,“yes”,“no”})×Σ× {←,→,−}].
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1. N decides a language L if for any x ∈ Σ∗,

x ∈ L if and only if (s, ., x)
N∗

−→ (“yes”, w, u) for
some strings w and u.

2. An input is accepted if there is some
sequence of nondeterministic choice that
results in “yes”.
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N decides L in time f(n) if

1. N decides L;

2. for any x ∈ Σ∗, if (s, ., x)
Nk

−→ (“yes”, w, u),
then k ≤ f(|x|).

Let NTIME(f(n)) be the set of languages decided

by NTMs within time f .
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Let NP =
⋃

k≥1 NTIME(nk).
We have

P ⊆ NP .
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Example 2.9

TSP (D) ∈ NP

1. Write out arbitrary permutation of 1, . . . , n.

2. Check whether the tour indicated by this
permutation is less than the distance bound.
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Theorem 2.6

Suppose that language L is decided by a NTM N
in time f(n). Then it is decided by a 3-string DTM
M in time O(cf(n)), where c > 1 is some constant
depending on N .

(NTIME(f(n)) ⊆
⋃

c≥1 NTIME(cf(n)).)
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Example 2.10

• Reachability ∈ NSPACE(lg n) (This is easy.)

• Reachability ∈ SPACE((lg n)2) (In Chapter 7.)
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Why employ nondeterminism?
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Exercises

2.8.1, 2.8.4, 2.8.6, 2.8.7, 2.8.8, 2.8.9, 2.8.10,

2.8.11
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