Computational Biology

Midterm Examination
CSIE, GIBBT 210071
National Chi Nan University

Nov 12, 2007
You should give all details in your answers in order to get the points.
Problem 1 (10 points) Given any two strings $X=x_{1} \cdots x_{n}$ and $Y=y_{1} \cdots y_{m}$ as the input, we define the following recurrence relation

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{i}\right) \\
F(i-1, j)-1 \\
F(i, j-1)-1
\end{array}\right.
$$

where $s\left(x_{i}, y_{j}\right)=1$ if $x_{i}=y_{j}$, and -1 otherwise. The initial condition sets $F(0,0)=F(0, j)=F(i, 0)=0$ for $1 \leq i \leq n$ and $1 \leq j \leq m$. Please give an intuitive interpretation for the meaning of entries which take the maximum value in the last row (i.e., $i=n$) and the last column (i.e., $j=m$).

Problem 2 (10 points) Please list all possible DNA fragments that can map to the the following polypeptide chain by the standard genetic code:

Phe Phe Leu Ile Lys Arg Arg Gly Tyr.

Problem 3 (10 points) In the Partial Digest Problem, ΔA is defined as the multiset $\{|x-y|: x, y \in A\}$ where A is any set of integers. Show that there exist sets B and C such that $\Delta B=\Delta C$ (in multiset) but $B \neq C$ (in set).

Problem 4 (10 points) Suppose we have the following alignment

$$
\begin{array}{ll}
\text { 1: } & \text { A T C C G A T A A A A } \\
\text { 2: } & \text { A } \\
\text { T C A A C A A T } \\
\text { 3: } & \text { A T G G A T A A A A } \\
\text { 4: } & \text { T C G GAA A G G } \\
\text { 5: } & \text { A C C G C A A A A A }
\end{array}
$$

Determine their consensus string.
Problem 5 (10 points) Let the input be a finite sequence of integers $x_{1}, x_{2}, \ldots, x_{n}$. Please design a linear-time algorithm to identify indices i and j such that $\sum_{k=i}^{j} x_{k}$ is maximum over $1 \leq i \leq j \leq n$. (Hint: Let $S(t)=\sum_{k=1}^{t} x_{k}$ for $1 \leq t \leq n$. The problem becomes to locate i and j such that $S(j)-S(i)$ is maximum. Define TWO arrays $A(t)$ and $B(t)$ where $A(t)$ records the maximum interval within $[1, t]$ and $B(t)$ records the maximum interval ending at t. Then apply the dynamic programming to evaluate A and B in a mixed way.)

Problem 6 (10 points) Given any string X, its prefix reversal is $y^{r} z$ where $y z=x$ and y^{r} is the reverse string of y. For example, if $X=a b c d e$, then cbade is a prefix reversal of X since we reverse the order of the first three characters in X. Give a derivation to transform $X=$ ATCGTAAA into $Y=$ AAAATTCG by reversal operations.

Problem 7 (10 points) Let permutation $\pi=1325674$. Evaluate the number of break points in π after appending 0 and 8 to the front and end of π, respectively.

Problem 8 (10 points) Suppose we have two restriction enzymes A and B, and we want to determine the restriction map of A and B on a DNA sequence. When we add only A into this sequence, we get fully-cleaved fragments of lengths $3,6,9,12$. When we add only B, we get 10,20 . However, if we add both A and B, we get $3,5,6,7,9$. Please reconstruct the restriction sites (i.e., the locations) for A and B on this sequence.

Problem 9 (10 points) Show that there exists a function from natural numbers to natural numbers that it is neither $O\left(n^{3}\right)$ nor $\Omega\left(n^{2}\right)$.

Problem 10 (10 points) Give an example to show that there are strings A, B, C such that the longest-common subsequence of A, B, and C is shorter than the longest-common subsequence for any two strings out of A, B, and C.

