Finite Automata and Formal Languages

Midterm Exam

November 20， 2002
CSIE210030，National Chi Nan University

```
這次考試的評分標準:
假設一題滿分是十分, 大致上是依照下列標準評分
    10 分 完全正確
    8 分 正確,但有些許报症
    6 分 大致上正確,但問題比較大
    4 分 方向與原理正確,但没答對題目
    2 分 將題目解釋正確,但不會作答
    0 分 空白與亂寫
```

比方說，落在雨分的答案，基本上就需要去解釋題目。落在四分的答案，除了需要解釋題目外，還要說明你想如何解決這個問題，並認為基於怎樣的原理可以解出這題。六分以上的答案就不需要解釋題目了。

這個標準僅供參考，實際執行視情况而定。
以下各題配分均等，不需依題目順序答題，但需標清答題題號。
寫答案時請眚量詳答，不要以簡答的方式回答需要證明或是申論的題目。

Problem 1 Let the alphabet be $\{a, b\}$ ．Convert the following finite au－ tomaton to a regular expression．

Problem 2 Prove that the language $\left\{o^{p} \mid p\right.$ is a prime $\}$ is not regular．

Problem 3 Show that any finite language is regular. That is, if L is a set of strings with finitely-many elements, L is regular. Can your proof (or argument) be generalized to infinite language?

Problem 4 Let the alphabet be $\{a, b\}$. Convert the following nondeterministic finite automaton to an equivalent deterministic finite automaton.

Problem 5 Define the difference of two sets A and B as

$$
A-B:=\{x \mid x \in A \text { but } x \notin B\} .
$$

Show that if A and B are both regular languages, then $A-B$ is also regular.
Problem 6 Let G be the grammar

$$
S \rightarrow a S|a S b S| \epsilon .
$$

Prove that

$$
L(G)=\{x \mid \text { each prefix of } x \text { has at least as many } a \text { 's as } b \text { 's }\} .
$$

Note: We say that string x is a prefix of string y if there is a string z such that y can be written as $x z$. For example, 111 is a prefix of 111001 but not a prefix of 1100111.

Problem 7 Suppose that the alphabet is $\{a, b\}$. Give a context-free grammar generating the complement of the language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$.

