Finite Automata and Formal Languages

Final Exam

January 15, 2003
CSIE210030, National Chi Nan University

Problem 1 Describe the formal definition of Turing machines. (Hint: $\left.\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)\right)$

Problem 2 Show that the collection of decidable languages is closed under concatenation. That is, if both L_{1} and L_{2} are recursive, prove that $L_{1} \circ L_{2}=$ $\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$ is recursive.

Problem 3 Let a k-PDA be a pushdown automaton that has k stacks. Thus, a 0-PDA is an NFA and a 1-PDA is a conventional PDA. You are already know that 1-PDA are more powerful (recognize a larger class of languages) than 0-PDA. Show that 2-PDAs are more powerful than 1-PDAs.

Problem 4 Prove that a language is Turing-recognizable if and only if some enumerator enumerates it.

Problem 5 Prove that every 2-tape Turing machine has an equivalent single tape Turing machine.

Problem 6 What is Church-Turing Thesis? Discuss its significance.
Problem 7 Let C be a context-free language and R be a regular language. Prove that the language $C \cap R$ is context-free.

Problem 8 Show that $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and $\left.k=\max \{i, j\}\right\}$ is not a context-free language.

Problem 9 Prove that the class of context-free languages is not closed under complement. (Hint: Consider $A=\left\{a^{m} b^{n} c^{n} \mid m, n \geq 0\right\}$ and $B=$ $\left\{a^{n} b^{n} c^{m} \mid m, n \geq 0\right\}$).

Problem 10 Prove that if a language is context free, then some pushdown automaton recognizes it.

