## Finite Automata and Formal Languages <br> Midterm Exam <br> November 3, 2004 <br> CSIE210030, National Chi Nan University

Problem 1 Convert the following NFA into DFA with alphabet $\{a, b\}$.


Problem 2 State Pumping Lemma for regular languages. Use Pumping Lemma to prove that

$$
A=\left\{w w w \mid w \in\{0,1\}^{*}\right\}
$$

is not regular.
Problem 3 Let $A$ and $B$ be any languages. Show that $(A \cup B)^{*}=$ $A^{*}\left(B A^{*}\right)^{*}$.

Problem 4 Find a regular expression for the set of all binary strings with the following property that none of its prefixes has two more 0's than 1's nor two more 1's than 0 's. (We say that string $x$ is a prefix of string $y$ if $y$ can be written as $x z$ for some string $z$. For example, 111 is a prefix of 111000 , but not a prefix of 110000 .)

Problem 5 Define $w^{R}$ to be

1. $\epsilon$ if $w=\epsilon$;
2. $x^{\mathcal{R}} a$ if $w=a x$ where $a$ is a character in the alphabet and $x$ is a string. Prove that if $A$ is regular, then $\left\{w^{\mathcal{R}} \mid w \in A\right\}$ is also regular.

Problem 6 Find a context-free grammar that generates the language

$$
L=\left\{0^{n} 1^{2 n} \mid n \geq 0\right\} .
$$

Problem 7 Prove the following theorem.
If a language $L$ is regular, then exists a number $p$ such that for any string $s \in L$ with $|s| \geq p$ and any way of breaking $s$ into $s=x y z$ with $|y| \geq p, y$ can be written as $y=u v w$ such that $v \neq \epsilon$ and $x u v^{n} w z \in L$ for all $n \geq 0$.

