Automata and Formal Languages

Homework Set 7 December 29, 2004 http://staffweb.ncnu.edu.tw/shieng/

Problem 1 Consider the problem of testing whether a DFA and a regular expression are equivalent. Express this problem as a language and show that it is decidable.

Problem 2 Let $ALL_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA that recognizes } \Sigma^* \}$. Show that ALL_{DFA} is decidable.

Problem 3 Let $A_{\epsilon CFG} = \{\langle G \rangle \mid G \text{ is a CFG that generates } \epsilon\}$. Show that $A_{\epsilon CFG}$ is decidable.

Problem 4 Let $INF_{DFA} = \{\langle A \rangle | A \text{ is a DFA and } L(A) \text{ is an infinite language} \}$. Show that INF_{DFA} is decidable.

Problem 5 Let \mathcal{B} be the set of all infinite sequences over $\{0, 1\}$. Show that B is uncountable, using a proof by the diagonalization method.

Problem 6 Let $A = \{ \langle R, S \rangle | R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S) \}$. Show that A is decidable.

Problem 7 Show that the problem of testing whether a CFG generates some string in 1^* is decidable. In other words, show that

 $\{\langle G \rangle | G \text{ is a CFG over } \{0,1\}^* \text{ and } 1^* \cap L(G) \neq \emptyset \}$

is a decidable language.

Problem 8 Let $H = \{ \langle M \rangle | M \text{ is a Turing machine and } M \text{ halts on input } \langle M \rangle \}$. Show that H is undecidable.

Problem 9 Show that there exists a language that is not recursivelyenumerable (i.e., not Turing recognizable).

Problem 10 Suppose languages A and B are both decidable. Show that $A \cap B$, $A \cup B$, and $A \circ B$ are decidable.

Problem 11 Let A be *decidable* and B be *undecidable*. Can we conclude that $A \cap B$ is undecidable? What else for $A \cup B$ and $A \circ B$?