Automata and Formal Languages

Homework Set 6
December 22, 2004
http://staffweb.ncnu.edu.tw/shieng/
Problem 1 Let $F_{\mathrm{DFA}}=\{\langle A\rangle \mid A$ is a DFA and $L(A)$ is a finite language $\}$. Show that $F_{\text {DFA }}$ is decidable.

Problem 2 Show that the collection of decidable languages is closed under concatenation. That is, if both L_{1} and L_{2} are recursive, prove that $L_{1} \circ L_{2}=$ $\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$ is recursive.

Problem 3 Prove that a language is Turing-recognizable if it is decidable.
Problem 4 Answer the following questions and explain your answers.

1. There is a Turing machine that recognizes $\{\epsilon\}$.
2. The complement of an infinite language is finite and the complement of a finite language must be infinite.
3. There are uncountablely-many Turing machines.
4. The class of all context-free languages is of the same size as the class of all Turing-recognizable languages.
5. There is a push-down automaton that recognize $\}$.

Problem 5 Let \mathcal{B} be the set of all infinite sequences over $\{0,1\}$. Show that B is uncountable, using a proof by the diagonalization method.

