Advanced Algorithms
 Midterm Exam
 November 16, 2004
 IM135004, CSIE210048, National Chi Nan University

For the following "Decision Problems," you can get 5 points if your "yes/no" answer is correct for each problem; you can get the remaining 5 points if your explanation sounds reasonable.
Problem 1 (20 points) A clause is called pure iff it contains either only positive variables or only negative variables. For instance, $x_{1} \vee x_{2}$ and $\neg x_{1} \vee \neg x_{3}$ are both pure, but $\neg x_{1} \vee x_{2}$ is not. Show that the problem of deciding whether a set of pure clauses is satisfiable or not is NP-complete. (Hint: Try to reduce SAT to this problem by splitting on non-pure clauses.)

Problem 2 (15 points) The problem Chromatic Number asks
Given a graph G and an integer k, can we use at most k colors to label all nodes of G such that no two nodes joined by an edge in G have the same color?
Show that Chromatic Number is in NP.
Problem 3 (15 points) Problem PERM asks the following question:
Given two sequences $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, decide whether B is a permutation of A or not.
For example, we should answer "yes" if $A=(4,3,2,1)$ and $B=(2,4,1,3)$ and answer "no" if $A=(1,2,4,5)$ and $B=(4,3,1,2)$. Show that this problem has worst-case lower bound $\Omega(n \lg n)$.

Problem 4 (Decision problem, 10 points) Continue with Problem 3. Can we conclude that PERM \propto SAT?

Problem 5 (Decision problem, 10 points) Suppose we have two algorithms A_{1} and A_{2} that solve the same problem. We know that the time complexity of A_{1} is $O\left(n^{3}\right)$ and the time complexity of A_{2} is $O(n)$. Can we conclude that A_{2} is faster than A_{1} ?

Problem 6 (Decision problem, 10 points) Suppose we know the lower bound for solving problem A is $\Omega\left(n^{3}\right)$. Can we conclude immediately that $\Omega(n \lg \lg n)$ is also a lower bound for A?

Problem 7 (Decision problem, 10 points) Suppose we know that the worst case complexity of an algorithm B is $O\left(n^{2}\right)$. Can we conclude that the average case complexity of B is also $O\left(n^{2}\right)$?
Problem 8 (Decision problem, 10 points) Let $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Is the following equality correct?

$$
\sum_{i=1}^{n} H_{i}=n H_{n}-n+1
$$

