Advanced Algorithms

Midterm Examination
CSIE210048
National Chi Nan University

Nov. 17, 2009
Problem 1 ($\mathbf{1 5}$ points) The 0/1 knapsack problem is defined as follows:
Given positive integers $P_{1}, P_{2}, \ldots, P_{n}, W_{1}, W_{2}, \ldots, W_{n}$, and M, find $x_{1}, x_{2}, \ldots, x_{n}$ where $x_{i} \in\{0,1\}$ such that

$$
\sum_{i=1}^{n} P_{i} x_{i}
$$

is maximized subject to

$$
\sum_{i=1}^{n} W_{i} x_{i} \leq M
$$

The greedy algorithm which attempts to solve the $0 / 1$ knapsack problem is described as follows:
a. Let $C_{i}=\frac{P_{i}}{W_{i}}$ and $x_{i}=0$ for $1 \leq i \leq n$. Let $S=\{1,2, \ldots, n\}$.
b. Choose $j \in S$ such that $C_{j} \geq C_{i}$ for all $i \in S$. If $M \geq W_{j}$, let $M \leftarrow M-W_{j}$ and set $x_{j}=1$; otherwise leave $x_{j}=0$ unchanged. Remove j from S.
c. Repeat Step (b) until S is empty.

Can the above greedy algorithm find an optimal solution for the following instance of the $0 / 1$ knapsack problem?

i	1	2	3	4	5	6	7	8
P_{i}	10	5	1	9	3	4	11	17
W_{i}	7	3	3	10	1	9	22	15

with $M=14$. Justify your answer.
Problem 2 (15 points) Derive an asymptotic bound for the solution of the recurrence $T(n)=T(\lfloor\sqrt{n}\rfloor)+1$ for $n \geq 2$ with the boundary condition $T(n)=1$ when $n=1$.

Problem 3 (15 points) Let $f(n)=\binom{n}{n / 2}$ and $g(n)=2^{n}$ for positive integers n. Determine whether $f(n)=O(g(n)), f(n)=\Omega(g(n))$, or $f(n)=$ $\Theta(g(n))$. (Note: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.)

Problem 4 (15 points) Describe how to detect the existence of a cycle efficiently in Kruskal's algorithm for constructing minimum spanning trees.

Problem 5 (15 points) The bottleneck of a path in a directed graph G is the edge with the maximum edge weight along this path. The bottleneck distance between two given nodes u and v in G is the minimum value over all bottlenecks of paths from u to v. Modify the Dijkstra's algorithm described on Page 88 in the text book so that it can find the bottleneck distances from a given source vertex $v_{0} \in G$ to all other nodes in G with the same time complexity as the Dijkstra's algorithm.

Problem 6 (15 points) A bottleneck spanning tree of an undirected graph G is a spanning tree of G whose largest edge weight is minimum over all spanning trees of G. Show that a minimum spanning tree is a bottleneck spanning tree.

Problem 7 (10 points) Obtain a set of optimal Huffman codes for the eight messages $\left(M_{1}, M_{2}, \ldots, M_{8}\right)$ with access frequencies $\left(q_{1}, q_{2}, \ldots, q_{8}\right)=$ (1, 2, 3, 4, 5, 6, 7, 8).
To show = to prove!

