Advanced Algorithms

Final Examination
CSIE210048
National Chi Nan University

Jan. 12, 2010
Problem 1 ($\mathbf{1 5}$ points) Let $A=a_{1} a_{2} \ldots a_{p}, B=b_{1} b_{2} \ldots b_{q}$ and $C=$ $c_{1} c_{2} \ldots c_{r}$ be three sequences chosen from a finite alphabet. Describe a dynamic-programming algorithm that can find the length of the longest common subsequence of A, B and C in time $O(p q r)$.

Problem 2 (15 points) Let $\omega_{n}=e^{\frac{2 \pi i}{n}}$ where $i=\sqrt{-1}$ for integers $n \geq 1$. Show that

$$
\sum_{0 \leq k<n} \omega^{k}=1+\omega+\omega^{2}+\cdots+\omega^{n-1}=0
$$

for $n \geq 2$.
Problem 3 (15 points) Show that for any positive integer n, there must exist a unique integer m such that

$$
2^{m-1}<n \leq 2^{m}
$$

Problem 4 (15 points) Let $A=011010011$ and $B=111000111$. Find the longest common subsequence of A and B by using dynamic programming.

Problem 5 (15 points) Show that the divide-and-conquer algorithm described in the text book to solve the Voronoi diagram problem is optimal in time.

Problem 6 (15 points) Solve the following recurrence relation

$$
T(n)=T\left(\frac{n}{5}\right)+T\left(\frac{n}{4}\right)+T\left(\frac{n}{3}\right)+10 n
$$

with boundary condition $T(n)=O(1)$ for $n \leq 10$.
Problem 7 (15 points) Let $G=(V, E)$ be an undirected graph whose vertices are labeled from 1 to n where $n=|V|$, the number of vertices in G. Define $D(i, j, k)$ to be the length of the shortest path from vertex i to vertex j for $1 \leq i, j, k \leq n$ under the restriction that these paths cannot pass
through vertices whose labels are larger than k (the first and last vertices are not counted). Clearly, we have $D(i, j, 0)=0$ if $i=j$, and $D(i, j, 0)=\infty$ if $i \neq j$, for $1 \leq i, j \leq n$. Derive a dynamic-programming algorithm that can compute $D(i, j, n)$ for all $1 \leq i, j \leq n$ in time $O\left(n^{3}\right)$. That is, we evaluate the lengths of shortest paths between any two vertices of G.

