
Advanced Algorithms

Final Examination CSIE210048 National Chi Nan University

Jan. 13, 2008 A

	姓名	,:
	共三	三部份,滿分 100 分
	quest	One (40 points) Answer True or False for the following questions. For each tion, you can get 4 points if your answer is correct. You can use \bigcirc to stand for true \times for false.
() ①.	The number of edges of a Voronoi diagram is always equal to the number of edges of its dual Delaunay triangulation.
() ②.	The sorting problem described in Chapter 2 can be solved by the divide-and-conquer technique.
() 3.	The longest common subsequence of any given two sequences is unique.
() 4.	The linear programming problem can be solved in polynomial time with respect to the number of variables used in the programming.
() ⑤.	Given n numbers, their medium can be found in linear time.
()	Suppose we have the following recurrence relation
		$T(n) = 3T(\frac{n}{3}) + cn$, c a constant
		for the time complexity of a divide-and-conquer algorithm. Then $T(n) = O(n \lg n)$.
() ⑦.	When divide-and-conquer can be applied to solving a problem, its time complexity is always $O(n\lg n)$ where n is the size of the problem.
() ⑧.	If we can construct the Voronoi diagram in $O(n)$ time, then we can sort n numbers in $O(n)$ time.
()	Let w_n be $\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$. Then $\sum_{i=0}^{n-1} w_n^i = 1$ for all integers $n > 1$.
() 10.	Given any 10 numbers, they can be sorted in $O(1)$ time.

(B) Chapter 5; (C) Chapter 6; (D) Chapter 7;

(E) none of

(A) Chapter 4;

the above.

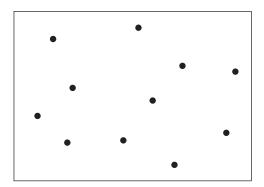
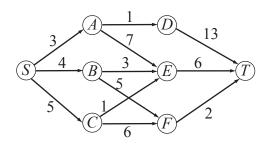



Figure 1: Eleven points on the plane

Figure 2: Ten points on the plane

$$P = \left(\begin{array}{ccc} 2 & 4 & 6 & 8 \\ 1 & 3 & 5 & 7 \\ 3 & 3 & 3 & 3 \end{array}\right)$$

Figure 4: A profit matrix

Part Three (20 points) Write down your impression of this course in Chinese or English.