Advanced Algorithms

Final Examination
CSIE210048
National Chi Nan University

Jan．13， 2009

姓名： \qquad學號： \qquad系級： \qquad
共三部份，滿分 100 分

Part One（40 points）Answer True or False for the following questions．For each question，you can get 4 points if your answer is correct．You can use \bigcirc to stand for true and \times for false．
（1）．The number of edges of a Voronoi diagram is always equal to the number of edges of its dual Delaunay triangulation．
（2）．The sorting problem described in Chapter 2 can be solved by the divide－and－conquer technique．
（3）．The longest common subsequence of any given two sequences is unique．
（4．The linear programming problem can be solved in polynomial time with respect to the number of variables used in the programming．
（ ）（5）．Given n numbers，their medium can be found in linear time．
（ © © Suppose we have the following recurrence relation

$$
T(n)=3 T\left(\frac{n}{3}\right)+c n, \quad c \text { a constant }
$$

for the time complexity of a divide－and－conquer algorithm．Then $T(n)=O(n \lg n)$ ．
（7）．When divide－and－conquer can be applied to solving a problem，its time complexity is always $O(n \lg n)$ where n is the size of the problem．

8．If we can construct the Voronoi diagram in $O(n)$ time，then we can sort n numbers in $O(n)$ time．
（ ）（9）．Let w_{n} be $\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$ ．Then $\sum_{i=0}^{n-1} w_{n}^{i}=1$ for all integers $n>1$ ．
（ ）（10．Given any 10 numbers，they can be sorted in $O(1)$ time．

Part Two (40 points) Choose the correct answer from the options for each question. You can get 4 points for each correct choice.
() (1). Let w_{12} be the primitive root of $x^{12}=1$. Then $w_{12}^{30}=$
(A) -1 ;
(B) 0 ;
(C) $\frac{1+\sqrt{5}}{2}$;
(D) $\frac{-1+\sqrt{3}}{2}$;
(E) none of the above.
() (2). Let N be the number of Voronoi edges for the following five points: $(0,0),(1, \sqrt{3})$, $(2,0),(3, \sqrt{3})$ and $(4,0)$. Then $N=$
(A) 4;
(B) 5 ;
(C) 6 ;
(D) 7;
(E) none of the above.
() (3). Let k be the length of a longest common subsequence of " $\mathrm{X}=$ algorithm" and " Y $=$ algebra". Then $k=$
(A) 2 ;
(B) 4 ;
(C) 6 ;
(D) 8;
(E) none of the above.
() 44. Suppose there are three projects and four resources. Let P be the profit matrix given in Figure 4 where $P_{i, j}$ stands for project i being allocated with j resources. Note that resources can not be divided. What is the maximum profit for assigning these four resources to these three projects?
(A) 7 ;
(B) 8 ;
(C) 9 ;
(D) 10;
(E) none of the above.
() (5). Given two sequences $a_{1} \cdots a_{m}$ and $b_{1} \cdots b_{n}$, let

$$
\begin{gathered}
A_{i, 0}=-i, A_{0, j}=-j, \\
\text { and } \quad A_{i, j}=\max \left\{\begin{array}{l}
A_{i-1, j-1}+\delta\left(a_{i}, b_{j}\right) \\
A_{i-1, j}-1 \\
A_{i, j-1}-1
\end{array}\right.
\end{gathered}
$$

where $\delta\left(a_{i}, b_{j}\right)=1$ if $a_{i}=b_{j}$, and 0 otherwise. Suppose $a_{1} \cdots a_{m}=$ GTAAHTY and $b_{1} \cdots b_{m}=$ TAHHYC. Then $A_{7,6}$ is
(A) 0 ;
(B) 1 ;
(C) 2 ;
(D) 3 ;
(E) none of the above.
() © ${ }^{6}$. Suppose we have the following linear program:
Minimize $Z=2 x+3 y$ subject to $x-y \geq 1, x \leq 10, y \leq 6$, and $3 x+8 y \geq 30$.
Then the optimal solution Z is
(A) 14;
(B) $14 \frac{1}{2}$;
(C) 20 ;
(D) 32;
(E) none of the above.
() 77. In Figure 1, there are eleven points. Please draw its convex hull. Then the number of sides of this convex hull is
(A) 7 ;
(B) 8 ;
(C) 9 ;
(D) 10 ;
(E) none of the above.
() 8. How many regions are there in a Voronoi diagram for points as depicted in Figure 2?
(A) 10 ;
(B) 20 ;
(C) 22 ;
(D) 30;
(E) none of the above.
() (9). The shortest path from S to T in Figure 3 is
(A) 8 ;
(B) 9 ;
(C) 10 ;
(D) 11 ;
(E) none of the above.
(10). Which chapter is not taught in this course?
(A) Chapter 4;
(B) Chapter 5;
(C) Chapter 6;
(D) Chapter 7;
(E) none of the above.

Figure 1: Eleven points on the plane

Figure 3: A network

Figure 2: Ten points on the plane

$$
P=\left(\begin{array}{llll}
2 & 4 & 6 & 8 \\
1 & 3 & 5 & 7 \\
3 & 3 & 3 & 3
\end{array}\right)
$$

Figure 4: A profit matrix

Part Three (20 points) Write down your impression of this course in Chinese or English.

